
Knowledge-Based Systems 89 (2015) 1–13
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
CCSpan: Mining closed contiguous sequential patterns
http://dx.doi.org/10.1016/j.knosys.2015.06.014
0950-7051/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 13818009080; fax: +86 2160279432.
E-mail addresses: jasun_zhang@163.com (J. Zhang), yinglin.wang@outlook.com

(Y. Wang), yangdingyu8686@sjtu.edu.cn (D. Yang).
Jingsong Zhang a, Yinglin Wang b,⇑, Dingyu Yang a

a Dept. of CSE, Shanghai Jiao Tong University, Shanghai, China
b Dept. of CST, Shanghai University of Finance and Economics, Shanghai, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 March 2015
Received in revised form 20 June 2015
Accepted 24 June 2015
Available online 2 July 2015

Keywords:
Data mining
Sequential pattern mining
Closed sequential pattern
Contiguous constraint
Closed contiguous sequential pattern
Existing closed sequential pattern mining generates a more compact yet complete resulting set compared
with general sequential pattern mining. However, conventional closed sequential pattern mining
algorithms pose a great challenge at spawning a large number of inefficient and redundant patterns,
especially when using low support thresholds or pattern-enriched databases. Driven by wide applications
of sequential patterns with contiguous constraint, we propose CCSpan (Closed Contiguous Sequential
pattern mining), an efficient algorithm for mining closed contiguous sequential patterns, which con-
tributes to a much more compact pattern set but with the same information w.r.t. closed sequential pat-
terns. Moreover, with the shorter feature of patterns, the closed contiguous sequential patterns are
preferred for feature selection and sequence classification based on the Minimum Description Length
principle. CCSpan adopts a novel snippet-growth paradigm to generate a series of snippets as candidates,
each of which is attached with a set of item(s) that precisely record the pattern’s occurrences in the data-
base, and CCSpan leverages three pruning techniques to improve the computational efficiency signifi-
cantly. Our experiments based on both sparse and dense datasets demonstrated that CCSpan is
efficient and scalable in terms of both database size and support threshold.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Sequential patterns can provide useful information that frequent
itemsets alone are not able to provide. Sequential pattern (SP) min-
ing, which discovers frequent subsequences as patterns in sequence
databases, is an important data mining problem with broad applica-
tions, such as feature selection for sequence classification and pre-
diction [1–3], discovering access patterns in Web logs [4], finding
copy-paste and related bugs in software code [5], and biological
sequence analysis [6,7]. Many sequential pattern mining approaches
have been studied, such as general sequential pattern mining [8,9],
closed sequential pattern (CloSP) mining [10–13], maximal sequen-
tial pattern mining [14–16], and interesting sequential pattern min-
ing [17–22]. In particular, closed sequential pattern mining has
become an active topic in data mining community, since it is a com-
pact yet lossless compression of sequential patterns.

Although some typical algorithms, such as CloSpan [10], BIDE
[11], ClaSP [12] and CM-ClaSP [13], have been developed for min-
ing closed sequential patterns, such algorithms often generate a
large number of frequent patterns satisfying the support threshold,
especially when the support threshold is low or the database is rich
in frequent patterns. For example, in biology domain, the set of
closed sequential patterns derived by previous mining methods
has a significantly greater size than the corresponding database.
Such derived set is too huge to be used effectively, which is an open
issue of previous pattern mining algorithms. Moreover, to generate
these patterns, the cost of mining process is prohibitively expen-
sive. Traditional (closed) sequential pattern mining algorithms,
including Apriori-based and pattern-growth, usually suffer from a
poor scalability in terms of support threshold and database den-
sity, because a large number of frequent patterns occupy consider-
able memory and give rise to a huge search space for closure
checking of new patterns or pattern growth, especially when the
low support threshold or the dense database is used. Also, such a
huge number of closed sequential patterns make some further data
analysis like feature selection and classification a very challenging
task. Hence, we aim at the ideal sequential patterns that are as
compact as possible and meanwhile carry the same information
w.r.t. the closed sequential patterns.

Fortunately, not all frequent sequential patterns are interesting
for stakeholders. Some sequential patterns meeting a/some specific
constraint(s) have attracted more attention, since they lead to
much fewer patterns and have a better overall classification perfor-
mance reported in [23]. One example is the closed contiguous

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.06.014&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.06.014
mailto:jasun_zhang@163.com
mailto:yinglin.wang@outlook.com
mailto:yangdingyu8686@sjtu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2015.06.014
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

1 K-subsequence and k-pattern are used to indicate the same meanings.

2 J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13
sequential pattern, in which the items appearing in the sequences
that contain the pattern must be adjacent w.r.t. the underlying
ordering as typically defined in the closed sequential pattern.
Using sequential patterns with contiguous constraint greatly ben-
efit a wide spectrum of real-life tasks. There are several typical
examples: (1) Web log mining [24,25]: For pre-fetching and cach-
ing, knowledge of such ordered contiguous page references is use-
ful for predicting future references; furthermore, knowledge of
frequent backward traversal is useful for improving the design of
web pages. (2) DNA and amino acid sequence analysis [26,27]:
Frequent contiguous sequential patterns in biological sequences
often reflect meaningful features. Finding such patterns is essential
to unveil common shared functions. (3) Mining IO traces [28,29]:
The analysis of contiguous IO access patterns is beneficial to opti-
mize the design of softwares, and thus improve the robustness of
systems. In addition, based on a common sequence database, the
average length of the closed contiguous sequential patterns is
much shorter than that of general closed sequential patterns with
the same support threshold. Therefore, the former patterns are
usually preferable to the latter ones according to the Minimum
Description Length (MDL) principle [28,29], which has a sound sta-
tistical foundation rooted in the well-known Bayesian inference
and Kolmogorov complexity.

Previous closed sequential pattern mining algorithms including
CloSpan [10], BIDE [11], ClaSP [12] and CM-ClaSP [13], have focused
on the scalability of general closed sequential pattern mining, which
does not involve the contiguous constraint of patterns. Such tech-
niques cannot be directly applied to the closed contiguous sequen-
tial pattern mining. This is because the set of closed contiguous
sequential patterns is not a proper subset of the set of closed sequen-
tial patterns or general sequential patterns. Existing methods using a
post-pruning step do not perform the closed contiguous sequential
pattern mining. Moreover, such methods do not record the patterns
occurrences in the database. By pushing the contiguous constraint
(i.e., pre-pruning) into the mining process, they will consume more
memory space and runtime. Consequently, the major challenge is
how to design an effective algorithm to ensure the resulting patterns
are contiguous and closed. In the sequels, we will call the sequential
patterns satisfying the contiguous yet closed constraints closed con-
tiguous sequential patterns, and seek to mine them in an effective and
efficient fashion.

To the best of our knowledge, we are the first to discover closed
contiguous sequential patterns that reflect the adjacency of items
and the closure of patterns simultaneously, which form a more
compact resulting set but do not lose any information. The contri-
butions of this piece of work include the following:

� We formalize the problem of mining closed contiguous sequen-
tial patterns, explore their properties, and present the first
closed contiguous sequential pattern mining algorithm,
CCSpan. Such algorithm and related datasets are available at
our public website, http://cit.sjtu.edu.cn/CCSpan.aspx.
� We introduce a novel snippet-growth scheme to generate

potential patterns. By splitting the original sequences into a
set of snippets using the n-gram model, the proposed scheme
suffices to guarantee the items of each snippet strictly keep
the initial adjacency and ordering.
� We devise three skillful pruning techniques to greatly reduce

the unpromising parts of search space, and utilize the transitiv-
ity of closed patterns to decompose the closure checking prob-
lem, and thus improve the efficiency of the CCSpan algorithm.
� Our experiments on both sparse and dense datasets demon-

strate that, CCSpan outperforms other methods significantly
regarding both effectiveness and efficiency. Moreover, CCSpan
scales well in runtime and memory usage with the base size
of synthetic datasets.
The remainder of the paper is organized as follows: Section 2
introduces the formulation of closed contiguous sequential pattern
mining problem as well as some notations used throughout the
paper. Following that, in Section 3, some properties of closed con-
tiguous sequential patterns are first explored, and then our solu-
tion is presented step by step. Furthermore, we use an example
to illustrate the execution traces of our algorithm in detail and ana-
lyze the time complexity of the problem. In Section 4 we illustrate
an extensive experimental study. Section 5 reviews the related
work. Finally, we conclude the study in Section 6.

2. Preliminary concepts

This section defines the basic concepts in sequential pattern
mining, and then formally introduces the problem of closed con-
tiguous sequential pattern mining.

An item is a basic unit that is of the minimal granularity in data
mining. Let I ¼ fi1; i2; . . . ; img be a set of distinct items. A sequence
S ¼ ha1; a2; . . . ; ani is an ordered list, where ai 2 I is an item for
1 6 i 6 n. A sequence, for brevity, is also expressed as
s ¼ a1a2 � � � an. According to the definitions, note that an item ai

(i 2 ½1;n�) can occur multiple times in a sequence s. The size of a
sequence, denoted as jSj, is the number of distinct items in the
sequence. The length of a sequence, denoted as lðSÞ, is the total num-
ber of items including repeated one(s) in the sequence, i.e. lðSÞ ¼ n. A
sequence with k items is also termed a length-k sequence or
k-sequence.1 The number of distinct items in such a k-sequence is less
than or equal to k. For example, one sequence ABCFAC is a 6-sequence
while its size is 4. Aside from the above notations, we further present
some more definitions, which provide a necessary background for the
understanding of our subsequent algorithm.

Definition 1. Given two sequences S1 ¼ ha1a2 � � � aii and
S2 ¼ hb1b2 � � � bji; S1 is a contiguous subsequence of S2, denoted as
S1 v S2 (if S1 – S2, written as S1 @ S2), if and only if there exist
integers k1; k2; . . . ; ki such that: (1) 1 6 k1 < k2 < � � � < ki 6 j; and
(2) a1 ¼ bk1

; a2 ¼ bk2
; . . . ; ai ¼ bki

. We also call S1 a snippet of S2; S2 a
super-sequence of S1, and S2 contains S1.
Definition 2. Given a sequence s and a sequence database D, the
absolute support of s in D is the number of sequences in D that con-
tain s, i.e., Supa

DðsÞ ¼ jfSjS 2 D ^ s v Sgj. Similarly, the relative sup-
port of s in D is the proportion of sequences in D that contain s,
i.e., Supr

DðsÞ ¼ jfSjS 2 D ^ s vgj=jDj.

In what follows, we use support SupDðsÞ instead of both absolute
support Supa

DðsÞ and relative support Supr
DðsÞ for simplicity.

Definition 3. Given a threshold r, a contiguous subsequence s is a
contiguous sequential pattern (ConSP) in database D if
SupDðsÞP r.
Definition 4. Given a contiguous sequential pattern s in sequence
database D; s is a closed contiguous sequential pattern (CloConSP)
if there exists no contiguous sequential pattern s0 such that: (1)
s @ s0, and (2) SupDðsÞ ¼ SupDðs0Þ.
Definition 5. Given two sequences s1 ¼ ha1a2 � � � aii and s2 ¼
hb1b2 � � � bji, and a sequence database D; s1 is absorbed by s2 (or s2

absorbs s1), denoted as s1 @¼ s2, if (1) lðs1ÞP 1; s1 @ s2, and (2)
SupDðs1Þ ¼ SupDðs2Þ.

http://cit.sjtu.edu.cn/CCSpan.aspx

Table 1
An example sequence database D.

Sequence Id Sequence

1 CAABC
2 ABCB
3 CABC
4 ABBCA

Table 2
Comparison of four types of frequent sequences.

Sequence
type

Frequent sequences

FSP A:4, AA:2, AB:4, ABB:2, ABC:4, AC:4, B:4, BB:2, BC:4, C:4, CA:3,
CAB:2, CABC:2, CAC:2, CB:3, CBC:2, CC:2

FConSP C:4, A:4, B:4, CA:3, AB:4, BC:4, ABC:3
FCloSP AA:2, ABB:2, ABC:4, CA:3, CABC:2, CB:3
FCloConSP CA:3, AB:4, BC:4, ABC:3

J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13 3
Definition 6. Provided two sequences s1 ¼ ha1a2 � � � aii and
s2 ¼ hb1b2 � � � bji; s1 is a pre-subsequence of s2, denoted as
s1 @pre s2, if (1) lðs1ÞP 1; lðs2Þ � lðs1Þ ¼ 1; and (2) a1 ¼ b1; a2 ¼
b2; . . . ; ai ¼ bj�1. Similarly, s1 is a post-subsequence of s2, denoted
as s1 @post s2, if (1) lðs1ÞP 1; lðs2Þ � lðs1Þ ¼ 1; and (2) a1 ¼ b2; a2 ¼
b3; . . . ; ai ¼ bj. Pre-subsequence and post-subsequence are collec-
tively called pre-post-subsequence.

We highlight that a contiguous subsequence s may appear more
than once in a sequence S in database D. In this case we only count
once in accordance with the convention of previously developed
sequential pattern mining algorithms. For convenience, we inter-
changeably use sequential pattern and SP, closed sequential pat-
tern and CloSP, contiguous sequential pattern and ConSP, closed
contiguous sequential pattern and CloConSP in the remainder of
the paper.

Problem statement. Given a sequence database D and a mini-
mum support threshold r, the problem of mining closed contigu-
ous sequential patterns is to discover the complete set F of
frequent closed contiguous subsequences.

Example 1. Suppose that we have a sequence database D in
Table 1 sharing with [11,30] and an absolute support r ¼ 2. Given
a sequence database D sharing with [11,30] as shown in Table 1
and an absolute support r ¼ 2. The input database lists three
distinct items and four input sequences (i.e. jDj ¼ 4). Four types of
frequent sequences, including frequent sequential pattern (FSP),
contiguous sequential pattern (FConSP), closed sequential pattern
(FCloSP), and closed contiguous sequential pattern (FCloConSP), with
their absolute supports attached after ‘‘:’’, are elicited from D
respectively (see Table 2). The entire set of frequent sequences
contains 17 patterns, while the full set of contiguous sequential
patterns is only 7. Similarly, the whole set of closed sequential
patterns consists of 6 patterns. In contrast, the size of closed
contiguous sequential pattern set is only 4. Informally, given an
input sequence database and a user-specified support threshold,
the size of closed contiguous sequential pattern set is much
smaller than that of closed sequential pattern set.
2 The repeated elements such as items A and C, will be first discarded in next
pruning step.
3. Efficient mining of closed contiguous sequential patterns

Before diving into developing a new CCSpan algorithm, we con-
sider the following questions: (1) How do we obtain the potential
patterns given the fact that they must strictly maintain the original
adjacency of items? (2) Upon getting a candidate subsequence,
how do we design search space pruning scheme(s) to accelerate
the mining process? (3) How do we check whether a contiguous
sequential pattern is closed or not? In the sequels, we elaborate
three steps of CCSpan and answer these three questions.

3.1. CCSpan overview

The contiguous and closed constraints along with the properties
of sequential patterns inspire a three-step design for CCSpan. First,
each sequence S of input sequence database D is split into a series
of snippets (i.e., candidate contiguous subsequences) which pre-
serve the original ordering of items. The length of the snippets is
fixed within one complete scan in D, while it incrementally
increases by step length 1 according to the n-gram model [31] in
subsequent scans. Second, by exploring some properties of closed
contiguous sequential patterns, we develop three effective pruning
techniques, checked snippet pruning, pro-post-subsequence prun-
ing, and support pruning to prune the pointless parts of search
space. The occurrence frequencies of the remaining candidates,
which passed through the first two pruning procedures will be
counted in the database respectively. We iterate this process until
no more distinct patterns exist. A full set consisting of all contigu-
ous sequential patterns is obtained accordingly. In the third step,
all non-closed contiguous sequential patterns are distinguished
successively from the set of contiguous sequential patterns by per-
forming the closure checking, as suggested in Definition 4 and
Theorem 2.

3.2. Candidate generation

Due to the lack of consideration on the specific constraint(s) of
sequential patterns, many conventional algorithms developed for
mining closed sequential patterns need to enumerate all possible
combinations of frequent subsequences to produce potential
longer patterns, rendering both memory and runtime consumption
intractable. In addition, two adjacent elements (or items) in a pat-
tern (see FSP and FCloSP) may not be adjacent in a sequence that con-
tains the pattern, which is unsuitable for some tasks as mentioned
earlier. To tackle such two problems, we develop a snippet-growth
scheme to generate candidates, the items of which strictly keep the
original adjacency and ordering. Every candidate is produced by
splitting the sequences of input database rather than by enumerat-
ing all possible joints of elements of a seed set.

Given a sequence database D, let S be a sequence in D. In the
first stage, called C1-splitting, each sequence S is split into a set
of length-1 snippets (subsequences), in which each snippet con-
tains only a single item. And these snippets are checked if they
are frequent. In the second stage, called C2-splitting accordingly,
each sequence S is also split into some snippets by length-2 win-
dow and the frequencies of them are determined in next pruning
steps. Unlike the candidates through classic algorithms, such snip-
pets (candidates) are both under a contiguous constraint and pre-
serving the original ordering in database. The following stages are
similar to the second one. Such a process repeats until no more
candidates generate or no candidates equal to or exceed the mini-
mum support. Here, we draw a concrete example to illustrate the
workings of the candidate generation.

Example 2. The first sequence of Table 1, i.e., S1 ¼ hCAABCi, is
reused in this example. In C1-splitting stage, a 1-subsequence set,
i.e., C1 ¼ fC;A;A;B; Cg2 is formed by splitting the sequence S1. And
then the C2-splitting generates a 2-subsequence set C2 ¼ fCA;AA;AB;
BCg that is contains four elements (subsequences). The remaining

4 J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13
sets produced by CCSpan are C3 ¼ fCAA;AAB;ABCg;C4 ¼ fCAAB;
AABCg, and C5 ¼ fCAABCg respectively.

Generally, the process stops its splitting far before the snippets
actually reach the maximum length of sequences (for example,
length-5 in the above example) by employing our pruning para-
digms, which will be elaborated in next subsection.

3.3. Search space pruning

Every sequence of database is discretized into a serious of snip-
pets as candidate subsequences which are rather coarse because
they may contain many repeated and non-potential ones. To min-
imize the overhead of search space, we examine several character-
istics of contiguous sequential patterns in the sequel, which
underpin the design of pruning.

Assume that two sequences s ¼ ha1a2 � � � aii and s0 ¼ hb1b2 � � � bji;
s t s0 means s concatenates s0, i.e., s t s0 ¼ ha1a2 � � � aib1b2 � � � bji. The
pre-subsequence and post-subsequence of sequence s ðlðsÞP 2Þ
are also given by

spre ¼ f
@pre
ðsÞ ¼

GlðsÞ�2

i¼0

si ð1Þ

and

spost ¼ f
@post
ðsÞ ¼

GlðsÞ�1

i¼1

si ð2Þ

respectively, where i is the index of item in s.

Theorem 1. Given a sequence s (lðsÞP 1) and a sequence database D,
suppose SupDðsÞ ¼ r, then each non-empty subsequence s0 of s
satisfies SupDðs0ÞP r.
Proof. Let X be an itemset, Xsub be a set consisting of all subsets of
X; T be a Transaction, suppose SupTðXÞ ¼ r, then each non-empty
element x 2 Xsub satisfies SupTðxÞP r according to the downward
closure property of the Apriori. Without loss of generality, let Y
be a sequence with all items of X listed by a certain ordering,
Ysub be a set consisting of all subsequences of Y, then the support
of Y in T is the same as the X in T, i.e., SupTðYÞ ¼ SupTðXÞ ¼ r, while
Ysub � Xsub, then each non-empty element, i.e., non-empty subse-
quence y 2 Ysub satisfies SupTðyÞP r. The correctness of
Theorem 1 then becomes immediate. h
Lemma 1. Given a sequence s (lðsÞP 2), suppose s is frequent in
sequence database D, then both pre-subsequence spre and
post-subsequence spost are frequent in D.
Proof. Let F be a set consisting of all subsequences of s, then each
element of F, i.e., 8s0 2 F is frequent by virtue of Theorem 1. The
pre-subsequence spre 2 F and the post-subsequence spost 2 F. Then
both of them are frequent. The lemma holds immediately. h
Lemma 2. Given a sequence s (lðsÞP 2) and a sequence database D,
if there exists no frequent pre-subsequence or post-subsequence of s,
i.e., SupDðspreÞj r or SupDðspostÞj r holds, then s can be safely
pruned.
Proof. Easily derived from Theorem 1 and Lemma 1. h

The pruning process of CCSpan is divided into three stages,
which are successively elaborate in the following:
� Checked snippet pruning. In real-world datasets, some snippets
often appear multiple times not only among different sequences
but inside one sequence. For each newly split snippet, we check
the previous snippets to see whether the new one already
exists. The repeated snippets can be easily identified and dis-
carded on-the-fly. Hence, it is desirable that the checked snip-
pet pruning is assigned in the first step to ensure the repeated
snippets are pruned as early as possible, which avoids unneces-
sary pro-post-subsequence checking and support counting. In
short, this step leverages a repeated snippet checking strategy
to guarantee any distinct snippet is detected only once which
can speed up CCSpan’s mining process.
� Pre-post-subsequence pruning. Unlike conventional candidate

enumerate and test paradigm, pre-post-subsequence pruning,
for a new length-k snippet s, does not need to check all its
ðk� 1Þ-subsequences if there exist an infrequent one. Instead,
it checks only the frequency of pre-post-subsequences of s.
The length-k snippet is pruned immediately if its
pre-subsequence or post-subsequence is infrequent as indi-
cated by Lemma 2. Regarding the worst case, most of the previ-
ously developed sequential pattern mining methods need to be

detected Ck�1
k ¼ k times. In contrast, our pruning scheme takes

at most two times. Thus, such scheme can efficiently filter the
futile snippets from the first pruning stage. We find that this
manner significantly improves the performance in our real
experiments and makes the cost of such pruning nearly negligi-
ble compared with the aggregate running time.
� Support pruning. A snippet is called a promising candidate if it

satisfies: (1) It is distinct compared with the previous snippets
(already split snippets); and (2) both pre-subsequence and
post-subsequence of the snippet are frequent. Such snippets
satisfying the above twofold conditions can be shifted to count
their supports to check whether they are frequent. For each
promising candidate s, it is natural to use the conventual match-
ing method to count the actual support, however, CCSpan does
not need to check every sequence of database whether it con-
tains s. Instead, it only checks such sequences from the next
one w.r.t. the current sequence identifier to the end of the data-
base, which effectively prevents redundant snippet matching
operations to accelerate the counting process.

Such a set consisting of length-k contiguous sequential patterns
is formed when no more new k-patterns appear by iterating above
process. The complete set of length-ðk� 1Þ closed contiguous
sequential patterns can be discovered by performing the sequel
pattern closure checking scenario.
3.4. Pattern closure checking

The subsequent task is to distinguish non-closed contiguous
sequential patterns from the general contiguous sequential pat-
terns. The problem is to check out for each pattern s, whether there
is a super-pattern absorbing s (see Definition 5). The conventional
methods compare each pattern with other patterns in the discov-
ered set, which is costly due to its OðN2Þ complexity. An interesting
finding is that the closed contiguous sequential patterns hold the
transitivity (see Theorem 2) among pattern subsets, each of which
consists of single-length frequent patterns. Thus we can decom-
pose the problem of pattern-closure-checking in the full pattern
set into checking in each such two subsets with single-length pat-
terns, where the pattern length deviation of the two subsets is only
one. Using the transitivity property as a criterion for pattern clo-
sure checking, our algorithm contributes to a great computational
efficiency.

J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13 5
Theorem 2. Given three sequences s1; s2 and s3, where s1 @ s2 and
s2 @ s3, if both s1 @¼ s2 and s2 @¼ s3 hold, then s1 @¼ s3 holds in the
meantime.
Proof. Let SupDðs1Þ ¼ r1; SupDðs2Þ ¼ r2 and SupDðs3Þ ¼ r3. (i)
Because s1 @ s2 and s2 @ s3, we have s1 @ s3 by Definition 1; (ii)
based on s1 @¼ s2 and s2 @¼ s3, then r1 ¼ r2 and r2 ¼ r3 hold, so
r1 ¼ r3. With (i), (ii) and Definition 5, we complete our proof. h

Without loss of generality, assume that there are two contigu-
ous sequential pattern sets, a set Fk�1 consisting of length-ðk� 1Þ
patterns and a set Fk consisting of length-k ones (where k P 2). A
pattern s in Fk�1 is closed if there exists no element of Fk which
can absorb s with the same support. Specifically, each pair of
pre-post-subsequences of the length-k contiguous sequential pat-
terns are first calculated by Eqs. (1) and (2). In the following, the
set of length-ðk� 1Þ contiguous sequential patterns is scanned
for checking whether there exists a pattern satisfying itself and
its support count are respectively equal to the
pre-post-subsequence and the support count of current k-pattern
based on Definition 4. A length-ðk� 1Þ contiguous sequential pat-
tern is non-closed if the above twofold conditions are satisfied
simultaneously. This length-ðk� 1Þ checking is continued until
every element of the length-ðk� 1Þ set has been visited. From
the whole mining process point of view, once a new set of
length-k contiguous sequential patterns is formed completely,
the pattern closure checking step can be conducted on-the-fly. By
progressively checking, the whole non-closed contiguous sequen-
tial patterns are efficiently identified and the remains are closed
ones when CCSpan completes its searching.

3.5. CCSpan algorithm

In this subsection, for elaborating CCSpan, we introduce several
data structures first. Three compact data structures are employed
for performing our mining task as follows: The input sequence
database D is represented by a set of 2-tuples ðS:id; SÞ, where S:id
is a sequence identifier and S a sequence itself. The closed contigu-
ous sequential pattern and the non-closed one share the same data
structure: a triple ðf ; f :count;BÞ, where f is a pattern itself, f :count is
the support count of f in D, and the last attribute variable ‘‘B’’ takes
on the values ‘‘Y’’ and ‘‘N’’. Y indicates f holds the closed, while N
the non-closed. The final output of the algorithm is a set F, which
consists of all contiguous sequential patterns including closed
and non-closed ones. The inside patterns of F can be organized into
a form of set ffF1g; fF2g; . . . ; fFkgg consisting of k different parti-
tions, each of which is a subset with single-length patterns.

Algorithm 1 sketches CCSpan algorithm that mines the set of
closed contiguous sequential patterns. Given a transformed data-
base D and a support threshold r, we define global variables F
and Fk to store all length (closed) contiguous sequential patterns
and only length-k contiguous sequential patterns respectively.
The frequent 1-sequence set F1 is first derived by running the
init-gen() function (subroutine). Such 1-patterns are fed to
ConSP-gen() function for checking longer patterns. In each subse-
quent pass k, there are three steps: candidate generation, search
space pruning and pattern closure checking. Variable Pk is local to
each pass (line 2). It is a set for storing all the newly split snippets
during current length splitting process. Pk, as a parameter, is
employed by ConSP-gen() function, and it can greatly reduce the
computational cost of unqualified candidates pruning. Each initial
candidate subsequence is derived from the original sequence split-
ting in database (lines 3 and 4). Function ConSP-gen() is invoked
for performing the checked snippet pruning,
pre-post-subsequence pruning, and support pruning (line 5). It
returns a length-specified set of contiguous sequential patterns
depending on the passes of CCSpan algorithm. Subsequently, based
on the intermediate output set Fk consisting of length-k contiguous
sequential patterns just obtained and the intermediate output set
Fk�1 consisting of length-ðk� 1Þ contiguous sequential patterns
last obtained, all closed contiguous sequential patterns in Fk�1

are distinguished from general contiguous sequential patterns by
calling CloConSP-gen() effectively (line 8).

Algorithm 1. CCSpan(D;r)

Input: sequence database D, support threshold r
F ;; // initialize F to store the CloConSPs
Fk ;; // initialize Fk to store the length-k ConSPs
F1 init-gen(D;r) // generate the frequent 1-sequences

1: for (k ¼ 2; Fk�1 – ;; kþþ) do
2: Pk ; // initialize Pk to store the checked sequences
3: for each sequence S 2 D and lðSÞP k do
4: for each contiguous subsequence s 2 S and lðsÞ ¼ k do
5: ConSP-gen(D; s; Fk�1; Pk; S:id;r); // generate the

ConSPs
6: end for
7: end for
8: Fk�1 CloConSP-gen(Fk�1; Fk); // generate the

CloConSPs
9: F [k�1Fk�1;

10: end for
11: Output: F [kFk;

The output of Algorithm 1 is a pattern set
F ¼ fðf ; f :count;BÞjf :count P rg. The full closed contiguous
sequential patterns can be easily derived from such F via attribute
B, i.e., FCloConSP ¼ feje 2 F ^ B ¼ Yg. Better still, the complete set F,
which consists of all contiguous sequential patterns including
closed and non-closed ones, can be regarded as a byproduct along
with our mining task. In the sequel, the preceding three functions
will be discussed briefly.

Function init-gen(), as the first yet unique pass, is run for finding
all the frequent length-1 patterns, which are fed to the discovery of
longer patterns. These candidate 1-subsequences provided by split-
ting the initial sequences are excluded safely if they exist in the snip-
pet set P1, because all elements of it have been checked before (lines
3 and 4). For calculating the support of a promising candidate, it does
not need to scan the whole database. Instead, it only compares with
such sequences from the next sequence of current identifier to the
last one in the database (lines 6–10). Lines 11–13 show that a candi-
date is added to the length-1 pattern set F1 if its support is no less
than the threshold r. Each pattern in F1 is represented as a triple
ðs; s:count;YÞ, in which signature Y is default value. Finally, the func-
tion returns a full length-1 patten set.

Function 1. init-gen(D;r)

Input: a sequence database D
F1 ;; // initialize F1 to store the frequent

1-sequences
P1 ; // initialize P1 to store the checked

subsequences
1: for each sequence S 2 D do
2: for each 1-subsequence s 2 S do
3: if s 2 P1 then
4: continue;

(continued on next page)

6 J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13
5: else
6: for each sequence S0 2 ðD� ðS1; S2; . . . ; SS:idÞÞ do
7: if s v S0 then
8: s:count þþ; // increment the

support count
9: end if

10: end for
11: if s:count=n P r then
12: F1 [1ðs; s:count;YÞ; // n is jDj;Y is default
13: end if
14: P1 [1s;
15: end if
16: end for
17: end for
18: Return F1;

Function ConSP-gen() is invoked for mining the length-k ðk P 2Þ
contiguous sequential patterns. Line 1, similar to the line 3 of
Function 1, shows the termination condition: when the newly split
snippet has been generated in previous splitting process, such snip-
pet is eliminated immediately. Each distinct snippet is checked by
pre-post-subsequence pruning scheme, which ensures the infre-
quent candidates are identified and pruned before support pruning
(line 3). The star character ‘‘�’’ appearing in triple ðspre; �; �Þ and
ðspost; �; �Þ is regarded as wildcard to accept any value. The final out-
put is one of three groups: (1) Null; (2) Pk; and (3) Pk and Fk. The first
group says that the candidate is a repeated snippet, and it is first
eliminated (line 2) safely. The second one shows that at least one
pre-pro-subsequence of the candidate is infrequent (line 16), or
the support is less than the support threshold (line 13). The candi-
date is also pruned if one of the conditions is met. The last one
denotes the candidate is frequent and is added to set Fk (line 11).
The checked snippet set Pk is updated by adding an element if there
appears a new snippet accordingly (lines 11, 13 and 16).
Function 2. ConSP-gen(D; s; Fk�1; Pk; S:id;r)

Input: a sequence database D, a candidate subsequence s, a
set Fk�1 with length-ðk� 1Þ ConSPs, a set Pk with scanned
length-k contiguous subsequences, an identifier S:id of
sequence S in D, and a support threshold r

1: if s 2 Pk then
2: Return Null // prune the checked snippet
3: else if ðspre; �; �Þ 2 Fk�1 and ðspost ; �; �Þ 2 Fk�1 then
4: for each sequence S0 2 ðD� ðS1; S2; . . . ; SS:idÞÞ do
5: if s v S0 then
6: s:count þþ; // increment the support count
7: end if
8: end for
9: if s:count=n P r then

10: Fk [kðs; s:count;YÞ;
11: Return Fk and Pk [ks;
12: else
13: Return Pk [ks;
14: end if
15: else
16: Return Pk [ks;
17: end if

Function CloConSP-gen() is performed for discovering all the
length-ðk� 1Þ closed contiguous sequential patterns according to
the set of already mined length-ðk� 1Þ contiguous sequential pat-
terns and the set of newly found length-k ones. Each discovered
pattern s, as one of the attributes in tuple ðs; s:count;BÞ existing in
Fk, first produces two maximal sub-patterns, i.e., pre-subsequence
spre and post-subsequence spost , according to Eqs. (1) and (2) (line
1). And then the function scans Fk�1 to find such two tuples whose
the first attribute values are equal to spre or spost (lines 2 and 5).
Tuple ðspre; spre:count;YÞ in Fk is replaced by ðspre; spre:count;NÞ if
spre:count from Fk�1 and s:count from Fk are equal as well as spre and
s (line 3). Similarly, tuple ðspost; spost:count; YÞ is checked subsequently
(line 6). By continually replacing the non-closed contiguous sequen-
tial patterns in length-ðk� 1Þpattern set, the output set Fk�1 consists
of closed contiguous sequential patterns labeled with Y and
non-closed ones labeled with N.
Function 3. CloConSP-gen(Fk�1; Fk)

Input: a set Fk�1 with length-ðk� 1Þ ConSPs, a set Fk with
length-k ConSPs

1: for each element ðs; s:count;YÞ 2 Fk do
2: if ðspre; spre:count;YÞ 2 Fk�1 then
3: replace ðspre; spre:count;YÞ with ðspre; spre:count;NÞ in

Fk�1;
4: end if
5: if ðspost; spost :count; YÞ 2 Fk�1 then
6: replace ðspost ; spost :count;YÞ with ðspost ; spost :count;NÞ in

Fk�1;
7: end if
8: end for

Return Fk�1;
3.6. Illustrating case

Let us examine how to use CCSpan for discovering closed con-
tiguous sequential patterns, as exemplified below. For brevity,
we use Pru1; Pru2, and Pru3 instead of checked snippet pruning,
pre-post-subsequence pruning, and support pruning respectively.

For the same sequence database D in Table 3 with support r ¼ 2
shared with Example 1. The closed contiguous sequential patterns
in D can be mined by CCSpan in the following steps:
The invalid candidates are labeled with strickout and the specific
pruning steps are attached inside the square brackets ‘‘[]’’. Note that
the algorithm does not need to check the last sequence whether
there exist distinct patterns, because all the new subsequences
whose actual supports are 1, cannot satisfy the support requirement

Table 3
The characteristics of datasets.

Dataset Seq.
count

Distinct
items

Avg.
len.

Max.
len.

DS len.

Gazelle 59,601 497 2.51 267 149,638
Mushroom 8416 119 23.00 23 193,568

Gazelle_test 10,000 454 2.49 149 24,900
Mushroom_test 10,000 119 23.00 23 230,000

Protein_10 10,000 20 17.51 20 175,137
Protein_20 20,000 20 17.49 20 349,898
Protein_30 30,000 20 17.50 20 525,040
Protein_40 40,000 20 17.50 20 699,908
Protein_50 50,000 20 17.49 20 874,581

J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13 7
(r ¼ 2). We can see that most unpromising candidates are pruned by
checked snippet pruning and pre-post-subsequence pruning, which
contributes to the mining efficiency.

3.7. Complexity analysis

Considering the CCSpan algorithm attentively, the running time
is mainly affected during snippet splitting and checked snippet
pruning because most invalid candidates are pruned in such two
stages. The whole time consumption is approximately the sum of
splitting and checked snippet pruning cost under careful scrutiny.
Without loss of generality, let k be the maximal length of patterns
and S be a sequence in the original database D. The database length

n is computed by
PjDj�1

i¼0 lðSiÞ, where i is the identifier of S in D. Thus
the aggregate execution times of above two procedures is
2ðnþ ðn� 1Þ þ � � � þ ðn� kþ 1ÞÞ ¼ 2knþ kðk� 1Þ mathematically,
where k is a small constant in real-life mining task.
Consequently, the complexity of CCSpan algorithm is OðnÞ, which
is linearly scalable in terms of the database size.

We have carefully examined the design of CCSpan, which for-
mulates several termination conditions to make the recursive pro-
cess return early on, so as to accelerate the mining process of closed
contiguous sequential patterns. During the mining process, we do
not need to load the full data into memory. Instead, only one
sequence resides in memory at any time, which decomposes the
cost of allocating and freeing memory and makes mean shift well
suited for discovering closed contiguous sequential patterns in
big data sets.

4. Experiments

We will exhibit the thorough experimental results to verify the
following claims: (1) The discovered closed contiguous sequential
patterns are more compact and meanwhile have a better classifica-
tion performance than the closed sequential patterns. (2) CCSpan
consumes much less memory and can be an order of magnitude
faster than existing algorithms when the support is low or the
database is dense. (3) CCSpan holds a good scalability in both the
runtime and memory usage against the increasing number of
sequences for the datasets.

4.1. Datasets and environment

In our experiments, we used a variety of real and synthetic
datasets to study the performance of the CCSpan algorithm.
Furthermore, for thorough accessing the algorithm, we select the
datasets which can cover a wide range of distribution characteris-
tics, i.e., sparse and dense.

The first dataset, namely Gazelle, is sparse. It came from an
e-commerce and has been used in KDDCup-2000 competition
and is now available through the SPMF website [32]. Gazelle has
three different versions: BMS1, BMS2 and BMSPos. To make our
experiments fair to all the algorithms, one of our real-life datasets
shares the BMS1 version with the performance study in [11]. This
dataset consists of 59,601 sequences of click-stream data with an
average length of 2.51 items and contains 497 distinct items.

The second dataset, Mushroom, is dense. It contains character-
istics of various species of mushrooms and was originally obtained
from the UCI repository of machine learning databases. This data-
set consists of 119 unique items, 8416 sequences, resulting in
193,568 items. This dataset is also available at the same webside
shared with the dataset Gazelle.

The third and fourth datasets, Gazelle_test and Mushroom_test,
are randomly sampled from datasets Gazelle and Mushroom
respectively for evaluating the quality of mined closed contiguous
sequential patterns.

The fifth to ninth datasets are five synthetic datasets. They are
generated via a data generator provided by [33] based on a long
protein sequence WP_044990988, which is online at NCBI [34]. It
is a Rhodococcus equi protein sequence consisting of 8934 amino
acids, and has been annotated on many different RefSeq genomes
from the same or different species. The characteristics of these
datasets are shown in Table 3. More detailed information about
such datasets can be referred from [32–34].

We conducted a comprehensive performance study to evaluate
various aspects of algorithm CCSpan. All the experiments were
conducted on a computer with Intel Core i7 2.4Ghz CPU, 8 GB
memory, and Windows 7 installed. In the experiments we com-
pared CCSpan with two classic and two recent closed sequential
pattern mining algorithms, CloSpan [10], BIDE [11], ClaSP [12]
and CM-ClaSP [13]. The source codes of the four closed sequential
mining algorithms can be found from the SPMF data mining library
[35].

4.2. Conciseness study

The effectiveness study on the two real datasets is reported as
follows: Fig. 1 depicts the distribution comparison between discov-
ered closed sequential patterns (CloSPs) and closed contiguous
sequential patterns (CloConSPs) in the sparse dataset Gazelle.
Fig. 1(a) shows the distribution of CloConSPs against their length
for support thresholds varying from 0.06% to 0.10%, while
Fig. 1(b) shows the distribution of CloSPs. From Fig. 1(a) and (b),
we can see that the longest CloConSPs have a length of 9 while
the longest CloSPs are up to 15 at support 0.06%. The biggest subset
consisting of single-length CloConSPs occurs at length 2 while the
biggest subset consisting of single-length CloSPs is at length 4. The
former contains only 451 patterns but the latter more than 17,000
patterns, which is far more numerous than the former. The
CloConSPs mainly appear at below length 4 while the CloSPs are
from 2 to 8.

We also use the dense dataset Mushroom, to compare discov-
ered CloConSPs with CloSPs. Fig. 2(a) shows the distribution of
CloConSPs with varied support thresholds, from which one can
see that all patterns are relatively short no greater than 10, while
the length of CloSPs as shown in Fig. 2(a) reaches length 16. Like
the trend in Fig. 1(b), when the support threshold tends towards
a low value, for example, at support 6.0%, the number of CloSPs
increases dramatically. Most CloConSPs fall in the spectrum of
2-patterns to 3-patterns while CloSPs at the range of 6-patterns
to 9-patterns, which is longer than the former.

To further quest the performance, the full closed sequential pat-
terns and contiguous sequential patterns are compared as shown
in Fig. 3 in terms of the total number of patterns. From Fig. 3(a),
the numbers of closed sequential patterns formed by previous
algorithms vary from 3974 (r ¼ 0:10%) to 64,762 (r ¼ 0:06%),
while that of closed contiguous sequential patterns range from

Fig. 1. Distribution comparison between CloConSPs and CloSPs on Gazelle.

Fig. 2. Distribution comparison between CloConSPs and CloSPs on Mushroom.

8 J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13
662 to 1088, which are much less than the former with the corre-
sponding supports. Furthermore, in Fig. 3(b) the set of CloConSPs is
much more compact than that of CloSPs. When the supports of
Fig. 3(a) and (b) are respectively lowered to 0.06% and 6.0%, the
total numbers of closed sequential patterns grows up to 64.7 K
and 10 K, each of which is much more than the size of the original
databases. While the closed contiguous sequential pattern mining
algorithm CCSpan, only generates 1088 and 255 patterns respec-
tively with the same threshold.

The average lengths of CloConSPs and CloSPs are also presented
for varied support thresholds. From Fig. 4(a), the average length of
identified CloConSPs increases from 1.62 to 2.06, while that of
CloSPs from 2.59 to 4.58. Of the two patterns, the length of the for-
mer is almost half of that of the latter. Similarly, on dataset
Mushroom as shown in Fig. 4(b), the average length of CloConSPs
ranges from 2.64 to 3.3, while that of CloSPs from 6.79 to 7.42.
For both dataset Gazelle and dataset Mushroom, the average
length of the closed contiguous sequential patterns is much shorter
than that of closed sequential patterns with the same support
threshold.

Although the characteristics of the two datasets are quite differ-
ent, the above experiments deliver the following observations: (1)
The CloConSPs are concentrated in the spectrum of shorter length
compared with the distribution of CloSPs. (2) The size of
CloConSPs’ set is far less than that of CloSPs’ under a common sup-
port threshold. (3) The set of discovered CloConSPs maintains
shorter patterns than that of CloSPs with the same support
threshold.
4.3. Quality evaluation

One typical application of frequent sequential patterns is to
build classifiers by using these patterns as features. In the sequel,
we will evaluate the power of the closed contiguous sequential
patterns in terms of both the recall and the classification efficiency.

Two datasets, Gazelle_test and Mushroom_test, are generated
by randomly sampling from Gazelle and Mushroom (see Table 3).
Each dataset consists of 10 K sequences. Tables 4 and 5 show that
the closed contiguous sequential patterns hold the equivalent
recall with varied support thresholds in both sparse and dense
datasets. (The evaluation classifiers are available online at [36].)

Fig. 5 depicts the runtime of classification of the two patterns
(CloConSPs and CloSPs) in both sparse and dense datasets.
Fig. 5(a) illustrates the processing time of the classifiers at different
support thresholds in dataset Gazelle_test. The classifier with
CloConSPs is about ten times at r ¼ 0:10% and at least 110 times
at r ¼ 0:06% faster than the classifier with CloSPs with the same
support value. In dense dataset Mushroom_test, the CloConSP’s
classifier is more than 40 times faster than the CloSP’s one for
any minimum value.

There are three major reasons for the boosted performance of
CloConSPs for classification. First, the number of CloConSPs is
much less than that of CloSPs, but the CloConSPs carry the same
information as well as the latter. Second, the average length of
CloConSPs is shorter than that of CloSPs, thus reducing the runtime
of classification. Third, the CloConSPs maintain contiguous con-
straint, which are preferred over the CloSPs for pattern matching.

Considering Tables 4 and 5, different patterns CloConSPs and
CloSPs have the same expressive power partly because the
1-patterns of them match substantial numbers of examples on
Gazelle_test and Mushroom_test. In feature selection for classifica-
tion, length-1 patterns are often discarded because they fetch a lot
of negative examples as well as positive ones. To further evaluate
the classification performance of CloConSPs, we remove the
1-patterns from the the sets of CloConSPs and CloSPs. Moveover,
we randomly generate two sequence sets as negative example sets
using the items of datasets Gazelle and Mushroom. The sequences

Fig. 3. Number comparison between CloConSPs and CloSPs.

Fig. 4. Average length comparison between CloConSPs and CloSPs.

Table 4
Recall comparison between CloConSPs and CloSPs on Gazelle_test.

Pattern 0.06% 0.07% 0.08% 0.09% 0.10%

CloSPs 0.9961 0.9958 0.9951 0.9951 0.9941
CloConSPs 0.9961 0.9958 0.9951 0.9951 0.9941

J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13 9
(as positive examples) selected randomly from the real datasets
along with the negative ones form two testing datasets
Gazelle_PN and Mushroom_PN, each of which consists of 10,000
positive sequences and 10,000 negative ones. Tables 6 and 7 show
the classification comparisons between CloConSPs and CloSPs in
terms of the three evaluation metrics Recall; Precision, and F1-score.
From Table 6, one can see that the set of CloConSPs has a lower
recall but a higher precision and a competitive F1-score on sparse
dataset Gazelle_PN compared with the one of CloSPs. Table 7
shows that the set of CloConSPs obtains a equivalent recall, a
higher precision, and a better F1-score on dense dataset
Mushroom_PN. Fig. 6 shows the F1-score comparison between
CloConSPs and CloSPs for classification on both sparse and dense
datasets, from which one can see that the CloConSPs achieve a
higher F1-score with varied support thresholds in comparison with
the CloSPs.

The above performances deliver the effectiveness of CCSpan.
First, the set of closed contiguous sequential patterns generated
by CCSpan is over an order of magnitude less size than the set of
Table 5
Recall comparison between CloConSPs and CloSPs on Mushroom_test.

Pattern 6.0% 7.0% 8.0% 9.0% 10.0%

CloSPs 1.0000 1.0000 1.0000 1.0000 1.0000
CloConSPs 1.0000 1.0000 1.0000 1.0000 1.0000
closed sequential pattern by CloSpan, BIDE, ClaSP and CM-ClaSP
in all databases, especially when the support threshold is low or
the database is rich in frequent patterns. Second, the mined closed
contiguous sequential patterns share the same information with
the closed sequential patterns. Third, the set of closed contiguous
sequential patterns holds a steadily better performance than the
set of closed sequential patterns for sequence classification.
4.4. Efficiency study

We first test CCSpans efficiency for both sparse and dense data-
sets in terms of the execution time. Fig. 7(a) presents the running
time of the five algorithms at different support thresholds in data-
set Gazelle. At a high support, CCSpan can be several times slower
than the other four algorithms, but once we lower the support to a
certain point, for example, at r ¼ 0:06%, three algorithms includ-
ing CloSpan, ClaSP and CM-ClaSP discontinue searching patterns
because they run out of memory. For such case, CCSpan becomes
more efficient than BIDE, especially when the support is lowered
to 0.05%, it can be over an order of magnitude faster than BIDE.
Fig. 7(b) shows the runtime efficiency comparison for the dataset
Mushroom among CCSpan, CloSpan and BIDE rather than all five
algorithms, because ClaSP and CM-ClaSP algorithms ran out of
memory with any support threshold on such dataset. The experi-
mental result makes clear distinction among the algorithms tested.
It shows the same ordering of the algorithms for runtime:
‘‘CCSpan < CloSpan < BIDE’’. For any minimum support, CCSpan is
about one and more than two orders of magnitude faster than
CloSpan and BIDE respectively. Overall, CCSpan significantly out-
performs the previous closed sequential pattern mining algorithms
when the support is low or the dataset is dense regarding runtime
efficiency.

Fig. 5. Runtime comparison between CloConSPs and CloSPs for classification.

Table 6
Classification comparison between CloSPs and CloConSPs on Gazelle_PN.

Pattern 0.06% 0.07% 0.08% 0.09% 0.10%

Recall CloSPs 0.9761 0.9661 0.9523 0.9395 0.9300
CloConSPs 0.8872 0.8684 0.8537 0.8309 0.8073

Precision CloSPs 0.6877 0.7254 0.7586 0.7868 0.8112
CloConSPs 0.9768 0.9805 0.9821 0.9837 0.9857

F1-score CloSPs 0.8069 0.8286 0.8445 0.8564 0.8665
CloConSPs 0.9298 0.9211 0.9134 0.9009 0.8876

10 J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13
We next compare the memory consumption among the five
algorithms for both dataset Gazelle and dataset Mushroom.
Fig. 8(a) shows the results for dataset Gazelle, from which one
can see that CCSpan is efficient in memory usage. It requires a
much smaller memory space in comparison with the other four
algorithms. In most cases, CloSpan, ClaSP and CM-ClaSP algorithms
outperform BIDE in memory usage. However, when r ¼ 0:06%,
such three algorithms terminate due to out of memory. Like
Fig. 7(b), three algorithms, i.e., CCSpan, CloSpan and BIDE, are com-
pared as shown in Fig. 8(b) regarding space usage since the other
two algorithms (ClaSP and CM-ClaSP) ran out of memory with
any support threshold. All the three algorithms consume relatively
stable memory space, while CCSpan occupies over an order of mag-
nitude less memory than both CloSpan and BIDE. From the above
two sub-figures, it can be demonstrated that CCSpan significantly
outperforms the other four algorithms in memory usage in all
cases. Our memory usage analysis also shows part of the reason
why some algorithms become really slow because the huge num-
ber of patterns may consume a tremendous amount of memory.

From the above efficiency study, we can conclude that CCSpan
has good overall performance for both dense and sparse datasets
among the five algorithms tested.

4.5. Scalability study

In order to test the scalability of CCSpan, we randomly sampled
a series of datasets from a long protein sequence WP_044990988
Table 7
Classification comparison between CloConSPs and CloSPs on Mushroom_PN.

Pattern 6.0% 7.0% 8.0% 9.0% 10.0%

Recall CloSPs 1.0000 1.0000 1.0000 1.0000 1.0000
CloConSPs 1.0000 1.0000 1.0000 1.0000 1.0000

Precision CloSPs 0.8761 0.8761 0.8761 0.8761 0.8771
CloConSPs 0.9153 0.9237 0.9300 0.9383 0.9412

F1-score CloSPs 0.9340 0.9340 0.9340 0.9340 0.9345
CloConSPs 0.9558 0.9603 0.9637 0.9682 0.9697
(for details, see Table 3), which are very dense. As we explained
earlier, both ClaSP and CM-ClaSP fail to finish the searching due
to out of memory. Thus Figs. 9 and 10 show the scalability out-
comes of just three algorithms (CCSpan, CloSpan and BIDE) regard-
ing runtime and memory usage. Fig. 9 shows the running time of
the above algorithms with database size ranging from 10 K to
50 K and with the support as 1.0%. We see that CCSpan is slightly
faster than CloSpan, while it uses over one order of magnitude less
runtime than BIDE.

Fig. 10 shows the curves of space usage of CCSpan at r ¼ 1:0%,
with the database size growing from 10 K to 50 K too. We can see
that CCSpan is efficient in memory usage. It consumes over an
order of magnitude less memory than both CloSpan and BIDE.
For example, on dataset Protein_30K, CloSpan occupies 1077 MB
memory and BIDE 906 MB memory, while CCSpan only uses
64 MB memory. It is easy to see that CCSpan holds a more memory
efficient for a wide range of database size compared with the other
two algorithms.

The experimental outputs demonstrate the scalability of
CCSpan from both runtime and memory usage. That is to say, it
has very good scalability in terms of the database size.
5. Related work

Sequential patterns mining has been investigated for years. GSP
[37], SPADE [38] and PrefixSpan [8] are three typical algorithms
proposed for mining the complete set of general sequential pat-
terns, where PrefixSpan has the best overall performance [39].
Yun et al. [16–20] proposed a weighted sequential mining algo-
rithm with the aim of pushing the weight constraint into the min-
ing while maintaining the downward closure property. Four typical
algorithms, i.e., CloSpan [10], BIDE [11], ClaSP [12] and CM-ClaSP
[13] were introduced in a row for performing the closed sequential
pattern mining. CloSpan is based on the search framework of
PrefixSpan and also uses projected databases to recursively mine
closed sequential patterns. BIDE uses a sequence closure checking
scheme called BI-Directional Extension and prunes the search
space by BackScan pruning strategy. CloSpan and BIDE often termi-
nate their operations since the daunting number of candidate
sub-patterns or frequent sub-trees causes out of memory or
intractable workload. ClaSP and CM-ClaSP algorithms use a vertical
data representation and some pruning schemes to mine the closed
sequential patterns, which have a better performance in terms of
runtime compared with CloSpan and BIDE. However, when using
a very low support threshold or a very dense database, they discon-
tinue their running due to out of memory. While we adopt a new
snippet-growth paradigm to generate potential frequent patterns
which accurately record the items occurrences in the original

Fig. 6. F1-score comparison between CloConSPs and CloSPs for classification.

Fig. 7. Runtime comparison of the five algorithms on two datasets.

Fig. 8. Memory usage comparison of the five algorithms on two datasets.

Fig. 9. Runtime on Protein series. Fig. 10. Memory usage on Protein series.

J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13 11

12 J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13
sequences, and launch three pruning techniques to prune the futile
parts of search space.

CloSpan, BIDE, ClaSP and CM-ClaSP focus on the sequential pat-
tern mining with closed constraint only. However, we combine the
closed and the contiguous constraints for closed contiguous
sequential pattern mining. There exist several important differ-
ences. First, the closed contiguous sequential patterns achieve a
competitive performance in some particular applications, espe-
cially in biological sequence analysis, which is very different from
closed sequential patterns generated by previous algorithms.
Second, the closed contiguous sequential patterns have a smaller
volume and a shorter average length yet the same informative
closed sequential patterns, which are preferred for building classi-
fiers in comparison with the closed sequential patterns. Third, our
thorough performance studies with both sparse and dense datasets
demonstrated that the pruning techniques are effective in pruning
the unpromising parts of search space, and CCSpan holds a better
performance in terms of both efficiency and scalability compared
with previous algorithms.
6. Conclusion

We investigated the combination of the contiguous and the
closed constraints for a compact and lossless sequential pattern
mining, to address the closed sequential pattern mining problem,
that could be spawning a daunting number of inefficient and
redundant patterns. We presented a novel algorithm, CCSpan,
which efficiently mines closed contiguous sequential patterns.
CCSpan adopts a new snippet-growth paradigm to generate poten-
tial frequent patterns which accurately record the items’ occur-
rences in the original sequences. Meanwhile, CCSpan launches
three pruning techniques to prune the futile parts of search space.
A complete set of closed contiguous sequential patterns is gener-
ated by performing the closure checking.

We evaluated the performance of CCSpan using several real-life
datasets with varied densities. Experimental results demonstrated
that the set of closed contiguous sequential patterns discovered by
CCSpan is much more compact than the set of closed by the
state-of-the-art algorithms (CloSpan, BIDE, ClaSP and CM-ClaSP),
especially when feeding a low support threshold or a
pattern-enriched database. We also demonstrated the closed con-
tiguous sequential patterns generated by CCSpan carry the same
information and have a better classification performance in com-
parison with closed sequential patterns. Moreover, CCSpan is effi-
cient and scalable in terms of database size.

There are many interesting issues related to CCSpan that can be
investigated further, such as mining maximal contiguous sequen-
tial patterns, mining top-k closed contiguous sequential patterns,
and extension of the method toward classifying sequences for par-
ticular applications are interesting issues for future research.
Acknowledgements

The authors are grateful to Assistant Prof. P. Fournier-viger for
releasing the source codes of the compared algorithms. Also, they
would like to express their thanks to Prof. T. Li, Prof. J. Cao, Dr. J.
Guo, Dr. L. Tao, and Dr. C. Zhang for helpful discussions and sugges-
tions during the development of CCSpan and helpful comments on
the manuscript. In addition, they would also like to thank the
anonymous reviewers and editors. This work was supported by
the National Natural Science Foundation of China (NSFC) under
the Grant No. 61375053.
References

[1] E.-C. Lu, W.-C. Lee, V.S. Tseng, A framework for personal mobile commerce
pattern mining and prediction, IEEE Trans. Knowl. Data Eng. 24 (5) (2012) 769–
782.

[2] P. Fournier-Viger, U. Faghihi, R. Nkambou, E.M. Nguifo, Cmrules: mining
sequential rules common to several sequences, Knowl.-Based Syst. 25 (1)
(2012) 63–76.

[3] D. Fradkin, F. Mörchen, Mining sequential patterns for classification, Knowl.
Inform. Syst. (2015) 1–19.

[4] P. Senkul, S. Salin, Improving pattern quality in web usage mining by using
semantic information, Knowl. Inform. Syst. 30 (3) (2012) 527–541.

[5] W. Qu, Y. Jia, M. Jiang, Pattern mining of cloned codes in software systems,
Inform. Sci. 259 (2014) 544–554.

[6] J.H. Chang, Mining weighted sequential patterns in a sequence database with a
time-interval weight, Knowl.-Based Syst. 24 (1) (2011) 1–9.

[7] V.C.-C. Liao, M.-S. Chen, Dfsp: a depth-first spelling algorithm for sequential
pattern mining of biological sequences, Knowl. Inform. Syst. 38 (3) (2014)
623–639.

[8] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.-C. Hsu,
Mining sequential patterns by pattern-growth: the prefixspan approach, IEEE
Trans. Knowl. Data Eng. 16 (11) (2004) 1424–1440.

[9] K. Kaneiwa, Y. Kudo, A sequential pattern mining algorithm using rough set
theory, Int. J. Approx. Reason. 52 (6) (2011) 881–893.

[10] X. Yan, J. Han, R. Afshar, Clospan: mining closed sequential patterns in large
datasets, in: Proceedings of SIAM International Conference on Data Mining,
SIAM, 2003, pp. 166–177.

[11] J. Wang, J. Han, Bide: efficient mining of frequent closed sequences, in:
Proceeding of 20th International Conference on Data Engineering, IEEE, 2004,
pp. 79–90.

[12] A. Gomariz, M. Campos, R. Marín, B. Goethals, Clasp: an efficient algorithm for
mining frequent closed sequences, in: Advances in Knowledge Discovery and
Data Mining, Springer, 2013, pp. 50–61.

[13] P. Fournier-Viger, A. Gomariz, M. Campos, R. Thomas, Fast vertical mining of
sequential patterns using co-occurrence information, in: Advances in
Knowledge Discovery and Data Mining, Springer, 2014, pp. 40–52.

[14] C. Luo, S.M. Chung, Efficient mining of maximal sequential patterns using
multiple samples, in: SDM, SIAM, 2005, pp. 415–426.

[15] P. Fournier-Viger, C.-W. Wu, V.S. Tseng, Mining maximal sequential patterns
without candidate maintenance, in: Advanced Data Mining and Applications,
Springer, 2013, pp. 169–180.

[16] G. Lee, U. Yun, K.H. Ryu, Sliding window based weighted maximal frequent
pattern mining over data streams, Expert Syst. Appl. 41 (2) (2014) 694–708.

[17] U. Yun, H. Shin, K.H. Ryu, E. Yoon, An efficient mining algorithm for maximal
weighted frequent patterns in transactional databases, Knowl.-Based Syst. 33
(2012) 53–64.

[18] U. Yun, G. Lee, K.H. Ryu, Mining maximal frequent patterns by considering
weight conditions over data streams, Knowl.-Based Syst. 55 (2014) 49–65.

[19] U. Yun, G. Pyun, E. Yoon, Efficient mining of robust closed weighted sequential
patterns without information loss, Int. J. Artif. Intell. Tools 24 (01) (2015)
1550007.

[20] U. Yun, E. Yoon, An efficient approach for mining weighted approximate closed
frequent patterns considering noise constraints, Int. J. Uncertain., Fuzz.
Knowl.-Based Syst. 22 (06) (2014) 879–912.

[21] B. Le, M.-T. Tran, B. Vo, Mining frequent closed inter-sequence patterns
efficiently using dynamic bit vectors, Appl. Intell. (2015) 1–11.

[22] M. Fabrègue, A. Braud, S. Bringay, F. Le Ber, M. Teisseire, Mining closed
partially ordered patterns, a new optimized algorithm, Knowl.-Based Syst. 79
(2015) 68–79.

[23] N. Hariri, B. Mobasher, R. Burke, Context-aware music recommendation based
on latenttopic sequential patterns, in: Proceedings of the Sixth ACM
Conference on Recommender Systems, ACM, 2012, pp. 131–138.

[24] J. Chen, T. Cook, Mining contiguous sequential patterns from web logs, in:
Proceedings of the 16th International Conference on World Wide Web, ACM,
2007, pp. 1177–1178.

[25] J. Chen, Contiguous item sequential pattern mining using updown tree, Intell.
Data Anal. 12 (1) (2008) 25–49.

[26] T.H. Kang, J.S. Yoo, H.Y. Kim, Mining frequent contiguous sequence patterns in
biological sequences, in: Bioinformatics and Bioengineering, 2007. BIBE 2007.
Proceedings of the 7th IEEE International Conference on, IEEE, 2007, pp. 723–
728.

[27] M. Karim, M. Rashid, B.-S. Jeong, H.-J. Choi, et al., An efficient approach to
mining maximal contiguous frequent patterns from large dna sequence
databases, Genom. Inform. 10 (1) (2012) 51–57.

[28] J. Rissanen, Minimum description length principle, Encyclopedia Mach. Learn.
(2010) 666–668.

[29] Z. Zeng, J. Wang, J. Zhang, L. Zhou, Fogger: an algorithm for graph generator
discovery, in: Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, ACM, 2009, pp. 517–
528.

[30] J. Wang, J. Han, C. Li, Frequent closed sequence mining without candidate
maintenance, IEEE Trans. Knowl. Data Eng. 19 (8) (2007) 1042–1056.

http://refhub.elsevier.com/S0950-7051(15)00232-4/h0005
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0005
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0005
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0010
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0010
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0010
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0015
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0015
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0020
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0020
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0025
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0025
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0030
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0030
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0035
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0035
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0035
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0040
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0040
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0040
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0045
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0045
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0050
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0050
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0050
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0050
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0055
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0055
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0055
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0055
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0060
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0060
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0060
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0060
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0065
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0065
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0065
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0065
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0070
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0070
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0070
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0075
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0075
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0075
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0075
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0080
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0080
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0085
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0085
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0085
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0090
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0090
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0095
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0095
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0095
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0100
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0100
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0100
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0105
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0105
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0110
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0110
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0110
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0115
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0115
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0115
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0115
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0120
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0120
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0120
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0120
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0125
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0125
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0130
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0130
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0130
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0130
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0130
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0135
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0135
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0135
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0140
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0140
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0145
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0145
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0145
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0145
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0145
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0150
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0150

J. Zhang et al. / Knowledge-Based Systems 89 (2015) 1–13 13
[31] J. Zhang, Y. Wang, D. Yang, Automatic learning common definitional patterns
from multi-domain wikipedia pages, in: 2014 IEEE International Conference
on Data Mining Workshop (ICDMW), IEEE, 2014, pp. 251–258.

[32] Spmf, 2015. <http://www.philippe-fournier-viger.com/spmf/index.php>.
[33] Dataset Generator, 2015. <http://cit.sjtu.edu.cn/DatasetGenBio.aspx>.
[34] Ncbi, 2015. <http://www.ncbi.nlm.nih.gov>.
[35] P.F. Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, V.S. Tseng, Spmf: a

java open-source pattern mining library, J. Mach. Learn. Res. 15 (2014) 3389–
3393.
[36] Recall, 2015. <http://cit.sjtu.edu.cn/ClassifierCon.aspx>.
[37] R. Srikant, R. Agrawal, Mining Sequential Patterns: Generalizations and

Performance Improvements, Springer, 1996.
[38] M.J. Zaki, Spade: an efficient algorithm for mining frequent sequences, Mach.

Learn. 42 (1–2) (2001) 31–60.
[39] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current status and

future directions, Data Min. Knowl. Disc. 15 (1) (2007) 55–86.

http://refhub.elsevier.com/S0950-7051(15)00232-4/h0155
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0155
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0155
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0155
http://www.philippe-fournier-viger.com/spmf/index.php
http://cit.sjtu.edu.cn/DatasetGenBio.aspx
http://www.ncbi.nlm.nih.gov
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0175
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0175
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0175
http://cit.sjtu.edu.cn/ClassifierCon.aspx
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0185
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0185
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0185
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0190
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0190
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0195
http://refhub.elsevier.com/S0950-7051(15)00232-4/h0195

	CCSpan: Mining closed contiguous sequential patterns
	1 Introduction
	2 Preliminary concepts
	3 Efficient mining of closed contiguous sequential patterns
	3.1 CCSpan overview
	3.2 Candidate generation
	3.3 Search space pruning
	3.4 Pattern closure checking
	3.5 CCSpan algorithm
	3.6 Illustrating case
	3.7 Complexity analysis

	4 Experiments
	4.1 Datasets and environment
	4.2 Conciseness study
	4.3 Quality evaluation
	4.4 Efficiency study
	4.5 Scalability study

	5 Related work
	6 Conclusion
	Acknowledgements
	References

